Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2009, volume 10, issue 4, pages 437-445.
Section: Engineering and Methods of Experiment.
Received: 12.11.2009; Published online: 30.12.2009.
PDF Full text (en)
https://doi.org/10.15407/jnpae2009.04.437

Determination of the impurities concentration in tungsten, molybdenum, tin, and tellurium targets using neutron activation analysis techniques

A. El Abd1, M. Mostafa2

1Reactor Physics Department, Nuclear Research Centre, Inchass, Egypt
2Radioactiveisotopes and Generators, Hot labs Centre, Inchass, Egypt

Abstract: The fast and k0-neutron activation analysis (k0-NAA) methods were used to investigate the radioimpurities concentration of 124Sb, 134Cs, 60Co, 87Rb, 182Ta, 233Pa, 65Zn, 56Fe, 110mAg, 51Cr, 95Zr, 75Se and 114mIn in the target samples WO3, MoO3, SnO2 and TeO2 which are needed for radioisotopes 188Re, 99mTc, 113mIn, 117mSn and 131I production respectively at the Second Egyptian Research Reactor (ETRR-2). Experimental data, procedures and theoretical treatments were described. The concentrations of radioimpurities were determined and their sources either neutron capture reactions, or threshold reactions or both were identified. The accuracy of the determined concentrations was checked using the IAEA Soil-7 reference sample.

Keywords: impurities, concentration, isotope, fast neutron flux, specific activity, threshold reactions, k0-neutron activation analysis, neutron spectrum parameters.

References:

1. Moustapha E. M., Ehrhardta J. G., Smith J. C. et al. Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin. Nuclear Medicine and Biology 33 (2006) 81. https://doi.org/10.1016/j.nucmedbio.2005.09.006

2. Knaap F. F., Beets A. L., Mirzadeh S. et al. Production of medical radioisotopes in the ORNL high flux isotope reactor (HFIR) for cancer treatment and arterial restenosis therapy after PICA. Czech. J. Phys. 49 (1999) 799. https://doi.org/10.1007/s10582-999-1065-5

3. Näsam P., Vayrynen T. Impurities in 99mTc-generators. Eur. J. Nucl. Med. 8 (1983) 26. https://doi.org/10.1007/BF00263511

4. Toporov Y. G., Andreyev O. I., Akhetov F. Z. et al. Reactor production of high specific activity Tin-117m at RIAR. 5th Conf. on Isotopes (Brussels, Belgium, April 25 - 29, 2005).

5. Kuznetsov R. A., Daming C., Pakhomov A. N. et al. 188W/188Re generators of 1 Ci activity: Results of 7 Month Performance Study (Brussels, Belgium, April 25 - 29, 2005).

6. Mostafa M. Purification of neutron-irradiated tellurium targets from cross-radiocontaminants by precipitation with 1,10-phenanthroline. Separation and Purification Technology 62 (2009) 449. https://doi.org/10.1016/j.seppur.2008.02.018

7. Prasad D. S., Munirathnamt N. R., Rao J. V., Prakash T. L. Purification of tellurium up to 5N by vacuum distillation. Materials Lett. 59 (2005) 2035. https://doi.org/10.1016/j.matlet.2005.02.012

8. Menhaut W., Adams F., Hoste J. Determination of trace impurities in tin by neutron activation analysis. J. Radioanalytical Chem. 6 (1970) 83. https://doi.org/10.1007/BF02513903

9. Menhaut W., Adams F., Hoste J. Determination of trace impurities in tin by neutron activation analysis. J. Radioanalytical Chem. 9 (1971) 27. https://doi.org/10.1007/BF02514009

10. Menhaut W., Adams F., Hoste J. Determination of trace impurities in tin by neutron activation analysis. J. Radioanalytical Chem. 14 (1973) 295. https://doi.org/10.1007/BF02516594

11. Lin C. P., Hsieh B. T., Ting G., Yeh S. J. Determination of impurities in the eluate of rhenium generator using hydrated magnesium oxide as the preconcentration agent. J. Radioanalytical and Nucl. Chem. 236 (1998) 165. https://doi.org/10.1007/BF02386336

12. Cosgrove J. F., Morrison G. H. Activation Analysis of Trace Impurities in Tungsten Using Scintillation Spectrometry. Analytical Chem. 29 (1957) 1017. https://doi.org/10.1021/ac60127a006

13. Knaap F. F. A Generator-Derived Radioisotope for Cancer Therapy. Cancer Biotherapy and Radiopharmaceuticals 13 (1998) 337. https://doi.org/10.1089/cbr.1998.13.337

14. Jun Sig L., Jong-Soup L., UI-Jae P. et al. Development of a high performance 188W/188Re generator by using a synthetic alumina. Appl. Radiat. Isot. 67 (2009) 1162. https://doi.org/10.1016/j.apradiso.2009.02.062

15. Ryabchikov A. I., Skuridin V. S., Nesterov E. V. et al. Obtaining molybdenum-99 in the IRT-T research reactor using resonance neutrons. Nucl. Instrum. Methods Phys. Res. B 213 (2004) 364. https://doi.org/10.1016/S0168-583X(03)01592-1

16. Zolle I. Technetium-99m Pharmaceuticals: Preparation and Quality Control in Nuclear Medicine (Berlin: Springer, 2007). https://doi.org/10.1007/978-3-540-33990-8

17. Teranishi K., Yamaashi Y., Maruyama Y. 113Sn-113mIn generator with a glass beads column. J. Radioanalytical and Nucl. Chem. 254 (2002) 369. https://doi.org/10.1023/A:1021648621835

18. Brookeman V. A., Sun P. C. J., Bruno F. P. et al. Internal distribution and absorbed dose calculations for radioactive indium liver and lung scanning agents. Am. J. Roentgenol. 109 (1970) 735. https://doi.org/10.2214/ajr.109.4.735

19. O'Mara R. E., Subramanian G., McAfee J. G., Burger C. L. Comparison of 113mIn and other short-lived agents for cerebral scanning. J. Nucl. Med. 10 (1969) 18.

20. Constant-Machadoa H., Leclerc Jean-Pierre, Avilan E. et al. Flow modeling of a battery of industrial crude oil/gas separators using 113mIn tracer experiments. Chem. Eng. Process. 44 (2005) 760. https://doi.org/10.1016/j.cep.2004.08.005

21. Ponsard B., Srivastava S. C., Mausner L. F. et al. Production of Sn-117m in the BR2 high-flux reactor. Appl. Radiat. Isot. 67 (2009) 1158. https://doi.org/10.1016/j.apradiso.2009.02.023

22. Knaap F. F., Mirzadeh S., Beets A. L. et al. Reactor-produced radioisotopes from ORNL for bone pain palliation. Appl. Radiat. Isot. 49 (1998) 309. https://doi.org/10.1016/S0969-8043(97)00043-2

23. Manual for reactor produced radioisotopes, IAEA TECDOC-1340 (Vienna: IAEA, 2003).

24. Zidan J., Hefer E., Iosilevski G. et al. Int. J. of Radiat. Oncology Biology Physics 59 (2004) 1330. https://doi.org/10.1016/j.ijrobp.2004.01.036

25. Van Nostrand D., Wartofsky L. Radioiodine in the Treatment of Thyroid Cancer. Endocrinology & Metabolism Clinics of North America 36 (2004) 807. https://doi.org/10.1016/j.ecl.2007.04.006

26. Griggs W. S., Divgi C. Radioiodine Imaging and Treatment in Thyroid Disorders. Neuroimaging Clinics of North America 18 (2008) 505. https://doi.org/10.1016/j.nic.2008.03.008

27. De Corte F., Simonits A. Recommended nuclear data for use in the k0 standardization of neutron activation analysis. Atomic Data and Nuclear Data Tables 85 (2003) 47. https://doi.org/10.1016/S0092-640X(03)00036-6

28. Simonits A., Moens L., De Corte F. et al. k0-measurements and related nuclear data compilation for (n, γ) reactor neutron activation analysis. J. Radioanalytical and Nucl. Chem. 60 (1980) 461. https://doi.org/10.1007/BF02518906

29. El Abd À., El-Amir M., Mostafa M. Implementation of the k0-NAA in inner irradiation sites of the second Egyptian Research Reactor (ETRR-2). Arab J. of Nucl. Sci. and Appl. 42 (2009) 136.

30. Tuli K. J. Nuclear Wallet Cards (Brookhaven National Laboratory, National Nuclear Data Center, 2005).

31. Chu S. Y., Nordberg H., Firestone R. B., Ekstrom L. P. Isotope Explorer 2.23, 1999 (data retrieved online up to December 2008).

32. Dorval L. E., Arribére M. A., Ribeiro Guevara S. et al. J. Radioanalytical and Nucl. Chem. 270 (2006) 603. https://doi.org/10.1007/s10967-006-0468-z

33. Calamand A. Cross-sections for fission neutron spectrum induced reactions. Technical report series No 156. Handbook on nuclear activation cross-sections (Vienna: IAEA, 1974) p. 237.

34. Gilmore G. R. Practical Gamma-Ray Spectrometry (England: John Wiley & Sons Ltd., 2008). https://doi.org/10.1002/9780470861981

35. Mirzadeh S., Knaap F. F., Alexander C. W., Mausner L. F. Evaluation of neutron inelastic scattering for radioisotope production. Appl. Radiat. Isot. 48 (1997) 441. https://doi.org/10.1016/S0969-8043(96)00284-9

36. Mausner L. F., Mirzadeh S., Ward T. E. Nuclear data for production of 117mSn for biomedical application. Proc. Int. Conf. on Nuclear Data for Basic and Applied Science (Santa Fe, NM, 1985) p. 733. https://doi.org/10.1080/00337578608208354

37. De Corte F., Simonits A., De Weispelaere A., Hoste J. J. Radioanalytical and Nucl. Chem. 113 (1987) 145. https://doi.org/10.1007/BF02036056

38. De Corte F., Simonits A. k0 measurements and related nuclear data compilation for (n, γ) reactor neutron activation analysis. J. Radioanalytical and Nucl. Chem. 133 (1989) 43. https://doi.org/10.1007/BF02039970

39. Novković D., Kandić A. The determination of the thermal neutron flux density by the measurement of the activity ratio 199Au/198Au. Radiation Measurements 38 (2004) 193. https://doi.org/10.1016/j.radmeas.2003.07.003

40. Alfassi Z. B., Groppi F. On the determination of the thermal neutron flux density by the measurement of the activity ratio 199Au/198Au. Radiation Measurements 39 (2005) 561. https://doi.org/10.1016/j.radmeas.2004.10.003